Linear Algebra MTH 221 Fall 2010, 1-2

Exam I Review, MTH 221, Fall 2010

Ayman Badawi

	Гэ	2	1	4٦		1	0	2
QUESTION 1. Let A		2	-1	4	and $K =$	-4	2	2
	$ ^{-2}$	3	0			0	1	3
		2	-2	4]		-2	1	1

- (i) Find the 2nd column of AK
- (ii) Find the third row of KA
- (iii) Find the (3, 4)-entry KA
- (iv) Find the trace of AK
- (v) Solve the system $AX = \begin{bmatrix} 4 \\ -1 \\ 3 \end{bmatrix}$

QUESTION 2. Let $A = \begin{bmatrix} 3 & 2 \\ -4 & 6 \end{bmatrix}$. Write A as a linear combination of a symmetric and a skew symmetric matrix. (you must Find H (symmetric), W (skew symmetric) and two constants j, i such that A = jH + iW)

QUESTION 3. Let
$$H = \begin{bmatrix} 3 & 2 & b \\ -3 & -2 & 5 \\ 6 & c & 10 \end{bmatrix}$$

(i) For what values of b, c does the system $HX = \begin{bmatrix} 5\\ -5\\ 7 \end{bmatrix}$ have a unique solution?

- (ii) For what values of b, c does the system in (i) have infinitely many solutions?
- (iii) For what values of b, c is the system inconsistent?
- (iv) For what values of b, c will H be nonsingular(invertible)?

QUESTION 4. Use row operations only in order to calculate $\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -0.5 \end{bmatrix} \begin{bmatrix} 6 & 12 \\ -4 & 10 \end{bmatrix}$

QUESTION 5. Let A be a 4×4 matrix. Given

$$A \xrightarrow{3R_1 + R4 \to R_4} A_1 \xrightarrow{R_3 \leftrightarrow R_2} A_2 \xrightarrow{-3R_1} A_3 \xrightarrow{-4R_1 + R_2 \to R_2} A_4 = \begin{bmatrix} 1 & 2 & 2 & -4 \\ 0 & 0 & 3 & -2 \\ -1 & 4 & 2 & 2 \\ -1 & -2 & -2 & 8 \end{bmatrix}$$

- (i) Find det(A).
- (ii) Find $det(A_3)$
- (iii) Find a matrix B such that $BA = A_4$
- (iv) Find a matrix C such that $CA = A_3$
- (v) Find $det(2A_4A_2)$
- (vi) Is A nonsingular? if yes find $det(0.5A^{-1}A_1)$.
- (vii) Find $det(0.2(A_3A_4)^T)$
- (viii) Find elementary matrices E_1, E_2, E_3 such that $E_1E_2E_3A = A_3$.
 - (ix) Find A_4^{-1}

(x) Find the (2, 4)-entry of A_3^{-1}

QUESTION 6. Let $A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix}$ Given det(A) = 21.23 Consider the following system $AX = \begin{bmatrix} 3.2a_2 \\ 3.2a_5 \\ 3.2a_8 \end{bmatrix}$. Solve for x_1, x_2 , and x_3 .

QUESTION 7. (a)Find a 3 × 4 matrix A such that $\begin{bmatrix} 3 & 2 & 2 \\ 0 & 3 & 4 \\ 0 & 0 & 3 \end{bmatrix} A + \begin{bmatrix} 2 & 2 & 2 & 2 \\ 4 & 4 & 4 & 4 \\ 0 & 0 & 1 & 1 \end{bmatrix} = 2A + \begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & 3 & 3 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ (b) Find a 2 × 2 matrix such that $A \begin{bmatrix} 2 & 4 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 0 & 4 \end{bmatrix}$

QUESTION 8. Use the adjoint method to find the inverse of $A = \begin{bmatrix} 3 & 2 & 2 \\ 0 & 3 & 4 \\ 0 & 0 & 3 \end{bmatrix}$

QUESTION 9. Given A is a 3×3 matrix such that $A^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 2 & 1 \\ -3 & -3 & 3 \end{bmatrix}$. Find the solution for the system

$$AX = \begin{bmatrix} 2\\ -1\\ 3 \end{bmatrix}$$

QUESTION 10. (a) Find det(A) where $A = \begin{bmatrix} 3 & -2 & 2 \\ 6 & 3 & 4 \\ 2 & 1 & 3 \end{bmatrix}$ (b) Find det(A) where $A = \begin{bmatrix} 1 & 2 & 2 & -4 \\ -1 & -2 & 3 & -2 \\ -1 & 4 & 2 & 2 \\ 4 & 8 & 8 & -15 \end{bmatrix}$ QUESTION 11. Find the LU-Factorization of $A = \begin{bmatrix} 1 & 2 & 2 & -4 \\ -1 & 4 & 2 & 2 \\ -1 & -2 & 3 & -2 \\ 4 & 8 & 8 & -15 \end{bmatrix}$

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com