\qquad

Exam I Review, MTH 221 , Fall 2010

Ayman Badawi

QUESTION 1. Let $A\left[\begin{array}{cccc}2 & 2 & -1 & 4 \\ -2 & 3 & 0 & 1 \\ 1 & 2 & -2 & 4\end{array}\right]$ and $K=\left[\begin{array}{ccc}1 & 0 & 2 \\ -4 & 2 & 2 \\ 0 & 1 & 3 \\ -2 & 1 & 1\end{array}\right]$
(i) Find the 2nd column of $A K$
(ii) Find the third row of $K A$
(iii) Find the (3, 4)-entry $K A$
(iv) Find the trace of $A K$
(v) Solve the system $A X=\left[\begin{array}{c}4 \\ -1 \\ 3\end{array}\right]$

QUESTION 2. Let $A=\left[\begin{array}{cc}3 & 2 \\ -4 & 6\end{array}\right]$. Write A as a linear combination of a symmetric and a skew symmetric matrix. (you must Find H (symmetric), W (skew symmetric) and two constants j, i such that $A=j H+i W$)

QUESTION 3. Let $H=\left[\begin{array}{ccc}3 & 2 & b \\ -3 & -2 & 5 \\ 6 & c & 10\end{array}\right]$
(i) For what values of b, c does the system $H X=\left[\begin{array}{c}5 \\ -5 \\ 7\end{array}\right]$ have a unique solution?
(ii) For what values of b, c does the system in (i) have infinitely many solutions?
(iii) For what values of b, c is the system inconsistent?
(iv) For what values of b, c will H be nonsingular(invertible)?

QUESTION 4. Use row operations only in order to calculate $\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]\left[\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ 0 & -0.5\end{array}\right]\left[\begin{array}{cc}6 & 12 \\ -4 & 10\end{array}\right]$ QUESTION 5. Let A be a 4×4 matrix. Given
$A \underbrace{3 R_{1}+R 4 \rightarrow R_{4}} A_{1} \underbrace{R_{3} \leftrightarrow R_{2}} \quad A_{2} \underbrace{-3 R_{1}} A_{3} \underbrace{-4 R_{1}+R_{2} \rightarrow R_{2}} \quad A_{4}=\left[\begin{array}{cccc}1 & 2 & 2 & -4 \\ 0 & 0 & 3 & -2 \\ -1 & 4 & 2 & 2 \\ -1 & -2 & -2 & 8\end{array}\right]$
(i) Find $\operatorname{det}(A)$.
(ii) Find $\operatorname{det}\left(A_{3}\right)$
(iii) Find a matrix B such that $B A=A_{4}$
(iv) Find a matrix C such that $C A=A_{3}$
(v) Find $\operatorname{det}\left(2 A_{4} A_{2}\right)$
(vi) Is A nonsingular? if yes find $\operatorname{det}\left(0.5 A^{-1} A_{1}\right)$.
(vii) Find $\operatorname{det}\left(0.2\left(A_{3} A_{4}\right)^{T}\right)$
(viii) Find elementary matrices E_{1}, E_{2}, E_{3} such that $E_{1} E_{2} E_{3} A=A_{3}$.
(ix) Find A_{4}^{-1}
(x) Find the $(2,4)$-entry of A_{3}^{-1}

QUESTION 6. Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right] \quad$ Given $\operatorname{det}(A)=21.23$ Consider the following system $A X=\left[\begin{array}{l}3.2 a_{2} \\ 3.2 a_{5} \\ 3.2 a_{8}\end{array}\right]$. Solve for x_{1}, x_{2}, and x_{3}.

QUESTION 7. (a)Find a 3×4 matrix A such that $\left[\begin{array}{lll}3 & 2 & 2 \\ 0 & 3 & 4 \\ 0 & 0 & 3\end{array}\right] A+\left[\begin{array}{llll}2 & 2 & 2 & 2 \\ 4 & 4 & 4 & 4 \\ 0 & 0 & 1 & 1\end{array}\right]=2 A+\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 3 & 3 & 3 & 1 \\ 1 & 1 & 1 & 1\end{array}\right]$
(b) Find a 2×2 matrix such that $A\left[\begin{array}{cc}2 & 4 \\ -2 & 4\end{array}\right]=\left[\begin{array}{ll}3 & 2 \\ 0 & 4\end{array}\right]$

QUESTION 8. Use the adjoint method to find the inverse of $A=\left[\begin{array}{lll}3 & 2 & 2 \\ 0 & 3 & 4 \\ 0 & 0 & 3\end{array}\right]$
QUESTION 9. Given A is a 3×3 matrix such that $A^{-1}=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 2 & 1 \\ -3 & -3 & 3\end{array}\right]$. Find the solution for the system $A X=\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]$

QUESTION 10. (a) Find $\operatorname{det}(\mathrm{A})$ where $A=\left[\begin{array}{ccc}3 & -2 & 2 \\ 6 & 3 & 4 \\ 2 & 1 & 3\end{array}\right]$
(b) Find $\operatorname{det}(\mathrm{A})$ where $A=\left[\begin{array}{cccc}1 & 2 & 2 & -4 \\ -1 & -2 & 3 & -2 \\ -1 & 4 & 2 & 2 \\ 4 & 8 & 8 & -15\end{array}\right]$

QUESTION 11. Find the LU-Factorization of $A=\left[\begin{array}{cccc}1 & 2 & 2 & -4 \\ -1 & 4 & 2 & 2 \\ -1 & -2 & 3 & -2 \\ 4 & 8 & 8 & -15\end{array}\right]$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

